Implementation and Validation of Semi-Implicit WENO Schemes Using OpenFOAM®
نویسندگان
چکیده
In this article, the development of high-order semi-implicit interpolation schemes for convection terms on unstructured grids is presented. It is based on weighted essentially non-oscillatory (WENO) reconstructions which can be applied to the evaluation of any field in finite volumes using its known cell-averaged values. Here, the algorithm handles convex cells in arbitrary three-dimensional meshes. The implementation is parallelized using the Message Passing Interface. All schemes are embedded in the code structure of OpenFOAM® resulting in the access to a huge open-source community and the applicability to high-level programming. Several verification cases and applications of the scalar advection equation and the incompressible Navier-Stokes equations show the improved accuracy of the WENO approach due to a mapping of the stencil to a reference space without scaling effects. An efficiency analysis indicates an increased computational effort of high-order schemes in comparison to available high-resolution methods. However, the reconstruction time can be efficiently decreased when more processors are used.
منابع مشابه
Accelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملDevelopment of Openfoam Solvers for Incompressible Navier–stokes Equations Based on High-order Runge–kutta Schemes
Nowadays open-source CFD codes provide suitable environments for implementation and testing low-dissipative algorithms typically used for turbulence simulation. Moreover these codes produce a reliable tool to test high-fidelity numerics on unstructured grids, which are particularly appealing for industrial applications. Therefore in this work we have developed several solvers for incompressible...
متن کاملCG_prof.tex
We implemented the pressure-implicit with splitting of operators (PISO) and semi-implicit method for pressure-linked equations (SIMPLE) solvers of the Navier-Stokes equations on Fermi-class graphics processing units (GPUs) using the CUDA technology. We also introduced a new format of sparse matrices optimized for performing elementary CFD operations, like gradient or divergence discretization, ...
متن کاملAn implicit WENO scheme for steady-state computation of scalar hyperbolic equations
Weighted essentially non-oscillatory (WENO) schemes have proved useful in a variety of physical applications. They capture sharp gradients without smearing, and feature high order of accuracy along with nonlinear stability. The high order of accuracy, robustness, and smooth numerical uxes of the WENO schemes make them ideal for use with Jacobian based iterative solvers, to directly simulate the...
متن کاملcient Implementation of Weighted ENO Schemes 1
In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially non-oscillatory) nite diierence schemes of Liu, Osher and Chan 9]. It was shown by Liu et al. that WENO schemes constructed from the r th order (in L 1 norm) ENO schemes are (r +1) th order accurate. We propose a new way of measuring the smoothness of a numerical solution, emulating the idea of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018